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Abstract
Purpose – The purpose of this paper is to build a neural model of an aircraft from flight data and online estimation of the aerodynamic derivatives
from established neural model.
Design/methodology/approach – A neural model capable of predicting generalized force and moment coefficients of an aircraft using measured
motion and control variable is used to extract aerodynamic derivatives. The use of neural partial differentiation (NPD) method to the multi-input-
multi-output (MIMO) aircraft system for the online estimation of aerodynamic parameters from flight data is extended.
Findings – The estimation of aerodynamic derivatives of rigid and flexible aircrafts is treated separately. In the case of rigid aircraft, longitudinal and lateral-
directional derivatives are estimated from flight data. Whereas simulated data are used for a flexible aircraft in the absence of its flight data. The unknown
frequencies of structural modes of flexible aircraft are also identified as part of estimation problem in addition to the stability and control derivatives. The
estimated results are compared with the parameter estimates obtained from output error method. The validity of estimates has been checked by the model
validation method, wherein the estimated model response is matched with the flight data that are not used for estimating the derivatives.
Research limitations/implications – Compared to the Delta and Zero methods of neural networks for parameter estimation, the NPD method has
an additional advantage of providing the direct theoretical insight into the statistical information (standard deviation and relative standard
deviation) of estimates from noisy data. The NPD method does not require the initial value of estimates, but it requires a priori information about the
model structure of aircraft dynamics to extract the flight stability and control parameters. In the case of aircraft with a high degree of flexibility,
aircraft dynamics may contain many parameters that are required to be estimated. Thus, NPD seems to be a more appropriate method for the
flexible aircraft parameter estimation, as it has potential to estimate most of the parameters without having the issue of convergence.
Originality/value – This paper highlights the application of NPD for MIMO aircraft system; previously it was used only for multi-input and single-
output system for extraction of parameters. The neural modeling and application of NPD approach to the MIMO aircraft system facilitate to the
design of neural network-based adaptive flight control system. Some interesting results of parameter estimation of flexible aircraft are also
presented from established neural model using simulated data as a novelty. This gives more value addition to analyzing the flight data of flexible
aircraft as it is a challenging problem in parameter estimation of flexible aircraft.
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Nomenclature

a = angle of attack;
q = pitch rate;
Nz = normal acceleration;
d e = elevator input;
h1, h2 = elastic states of the flexible aircraft;
ðCz :ð Þ ;Cm :ð Þ ;C

h1
:ð Þ ;C

h2
:ð Þ Þ = on-dimensional derivatives;

Damk = differential accelerometer
measurements at kth position; and

Uk = bending mode displacement
coefficient at kth position.

Introduction

In a fairly complex system like aircraft, modeling and parameter
estimation play a crucial role in determining its stability and
control characteristics. Applications of the parameter
estimationmethod to estimate such parameters from flight data
in the linear flight regime have been highly successful in the past
(Maine and Iliff, 1986b; Bucharles et al., 2012). The neural
modeling represents an appealing alternative for aircraft system
modeling and control mainly because the neural network can
learn nonlinear input/output mappings from flight data. A
neural network brings important benefits of suppressing
theoretical difficulties that appear when applying classical
techniques on aircraft systems including nonlinearities in their
structure. As a result, the neural network can describe or
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control aircraft nonlinear systems accurately with few a priori
theoretical knowledge, and it is able to find many successful
applications of the neural network in the aerospace industry.
Neural network-based adaptive flight controller for uncertain,
nonlinear dynamical systems eliminates the need for offline
gain tuning and schedulingmethods (Chowdhary and Johnson,
2007; Khosravani, 2012; Pashilkar et al., 2006). A fault-
tolerance, neural network-based algorithm was also
successfully applied for flush data sensing system (Rohloff et al.,
1999).Many researchers have shown that aircraft neural model
has potential to accommodate changes in aircraft dynamics due
to system uncertainties (Trani et al., 2004; Raisinghani et al.,
1998a, 1998b).
Parameter estimation from flight data, as applied to

aircraft in the linear flight regime, is currently being used on
a routine basis with the assumption that the rigid body
model is valid (Maine and Iliff, 1986b; Bucharles et al.,
2012). Elastic degrees of freedom are, therefore, absent
from the aircraft derivative model used in the estimation
algorithm. The aircraft with a high degree of flexibility may
yield to system dynamics containing too many parameters,
which are required to be estimated. The estimation of a rigid
body and elastic body derivatives was also demonstrated by
Majeed et al. (2012); Majeed (2017) Majeed and Jatinder
(2013) and Bruno (2011) for a valid model of flexible
aircraft in a wide range of frequency. However, the recently
introduced neural partial differential method is able to give
theoretical insight into statistical information of relative
standard deviation (RSTD) of estimates from noisy data
(Das et al., 2010). In the presence of a change in process
noise, an adaptive unscented Kalman filter is used to
estimate aerodynamic parameters accurately from flight
data (Majeed and Kar, 2013), but this algorithm requires
high computational power and initial values of the
estimates.
As the aircraft is a complex, highly coupled and nonlinear

system, it needs a higher-order modeling method to completely
describe the system. The commonly used methods to estimate
aircraft parameters are output error method (OEM) and
filtering methods. They need a priori knowledge of dynamic
model and initial values of aerodynamic parameters to estimate
aircraft stability and control parameters (Maine and Iliff,
1986a; Klein and Moreli, 2006). The initial values of
parameters for rigid body aircraft are mostly available from the
wind tunnel database. But, a lot of aeroelastic derivatives are
involved in the flexible aircraft model and initial values of
certain derivatives are not known. Conversely, the use of scaled
version of aircraft in the wind tunnel may introduce the errors
in the prediction of aerodynamic derivatives. These predicted
values will be using the initial value of parameters for estimation
algorithm. This requires the application of an alternative
method that can provide accurate estimates of aircraft
parameters without their initial values (Kutluay and
Mahmutyazicioglu, 2009; Theodore et al., 2008).
The equation error method (EEM) is an alternative method

but can only be used for the deterministic system as opposed to
the stochastic approach of filtering method. This is considered
as the simplest method for the aircraft parameter estimation,
which was successfully applied to flight data of F-18High alpha
research vehicle (Morelli, 2000), and to a gliding flight vehicle

(Kutluay and Mahmutyazicioglu, 2009). EEM needs only the
model structure of the aircraft dynamics and does not require
initial values of parameters. However, in the presence of noise,
the least squares estimates of EEM are asymptotically biased,
inconsistent and inefficient. Therefore, neural networks have
become a preferred alternative for aerodynamic parameter
estimation, as they do not require a priori information about the
model structure and the parameters of aircraft system dynamics
(Raisinghani et al., 1998a, 1998b; Pedro and Kantue, 2011;
Pesonen et al., 2004; Raisinghani and Ghosh, 2000; Singh and
Ghosh, 2007). A class of neural network called the feed-
forward neural networks (FNNs) has been used to model the
aircraft dynamics wherein aircraft motion variables and control
inputs are mapped to predict the total aerodynamic coefficients
(Hess, 1993; Linse and Stengel, 1993). The capability of FNN
for aerodynamic modeling of a flexible aircraft and the
applicability of the delta method and the lambda gamma
learning rule for extracting parameters from a neural model are
demonstrated (Raisinghani and Ghosh, 2000; Samal et al.,
2009).
The mathematical model of the dynamical system either

has linear or nonlinear structure. Delta and Zero Method of
neural networks can be used to extract aircraft aerodynamic
derivatives from flight data irrespective of model structure
(Raisinghani et al., 1998a, 1998b). These methods provide
the estimate of aircraft parameters, but the statistics of
estimates are not inferred directly. Whereas, neural partial
differential (NPD) method (Sinha et al., 2013) is used to
estimate flight stability and control parameters with their
RSTD. This method has been originated from the fact that
the solution of ordinary differential equation and the partial
differential equation can be obtained by neural networks
(Lagaris et al., 1998). Moreover, the NPD method can also
extract parameters of dynamical systems, which are
appearing as nonlinear to the states of the system. This
paper extends the use of the NPD method for multi-input
and multi-output (MIMO) aircraft system; previously it was
used only for multi-input single-output system (MISO)
(Sinha et al., 2013). Thus, the presented results from
MIMO neural model for online aircraft parameter
estimation enhance the application of neural network-based
flight controller for the uncertain system dynamics. The
main contributions of this paper are the following:

� A neural model of rigid aircraft from flight data is
established, and its longitudinal and lateral-directional
derivatives using neural partial differentiation (NPD)
method are extracted. The extracted aerodynamic
derivatives are compared with the estimates obtained from
OEM.

� The estimated neural model of rigid aircraft is validated by
a complementary set of flight data. The results are
encouraging and this method is applied to the flexible
aircraft containing more number of unknown parameters.

� Besides the estimations of aerodynamic derivatives of
flexible aircraft, unknown frequencies of structural modes
of flexibility are also identified from its simulated data of
frequency sweep input. The identified flexible aircraft
model has validated with a complimentary set of data that
has generated with the use of 3-2-1-1 input signal of an
elevator.

Aircraft neural modeling

Majeed Mohamed and Vikalp Dongare

Aircraft Engineering and Aerospace Technology

Volume 90 · Number 5 · 2018 · 764–778

765



www.manaraa.com

Aircraft neural modeling and parameter
estimation method

Primarily neural model of aircraft system dynamics is
needed to be established to estimate the aircraft
aerodynamic parameters. The accuracy of the estimates will
depend on the validity of the aircraft neural model, which is
described below.

Aircraft neural modeling
The neural networks are made up of two main components
namely neuron or nodes and the connectors. The
connectors have own weights between two nodes. The
neural network uses the data set of input and output, to map
the function on to the network in the form of weights
between the internal nodes, as shown in the Figure 1. The
schematic structure of a three-layered FNN is consisting of
two hidden layers with activation function and one output
layer with summation function exempted from activation
function. The weights indirectly represent the function of a
given system for which the neural network is trained. The
output of each node is the sum of the product of the total
input to the particular node and their respective weights,
applied to an activation function. Back-propagation
approach is used for training the neural network. The neural
networks learn through an input–output pair of the system
and give an approximate function in the form of weights.
The complexity of the network can be changed with a
number of neurons and/or the number of hidden layers; this
decision is purely based on trial and error method. The
input and output vectors of neural network are defined as
A 2 <n1 1 and D 2 <k, respectively. Similarly, B 2 <m1 1 and
C 2 <l1 1 represent the first and second hidden layer of
neural network, respectively. Except for the output layer, all
the layers contain a bias term. Thus, the output of neural
network is given by:

D ¼ WTC (1)

where W is the set of weights between the second hidden layer
and output layer containing the bias terms:

W ¼
bw1 � � � bwk
w11 � � � w1k

..

. . .
. ..

.

wl1 � � � wlk

2
6664

3
7775 (2)

Similarly, we define:

C ¼ f VTBð Þ
B ¼ g UTAð Þ

�
(3)

where f and g are the activation function vectors and
are defined as f ¼ �1 f x1ð Þ � � � f xkð Þ� �T where f(x) is
expressed as:

f xð Þ ¼ 1� e�l x

11 e�l x (4)

And theweight matrix is represented as:

V ¼
bv1 � � � bvm
v11 � � � v1l
..
. . .

. ..
.

vm1 � � � vml

2
6664

3
7775 (5)

U ¼
bu1 � � � bum
u11 � � � u1m
..
. . .

. ..
.

un1 � � � unm

2
6664

3
7775 (6)

Input is defined by the vector A ¼ a0 a1 � � � an
� �

, where a0
defines bias input to the neural network. The input and
output are scaled for neural network using the following
equation:

Di;norm ¼ Di;normmin 1 Di;normmax �Di;normminð Þ � Di �Di;min

Di;max �Di;min

� �
(7)

whereDi;normmax andDi;normmin denote the higher and lower limits
of scaling range ofDi respectively. They are set to 0.9 and�0.9,
respectively. Di,max and Di,min denote the higher and lower
values ofDi.
Using the above notations, output of neural network can be

written as:

D ¼ fWTf VTg UTAð Þ� �
g (8)

Neural partial differentiationmethod
In this method, the neural network is trained with input and
output data so as to map the nonlinear function in the form of
weights. The activation function holds the key for the neural
partial difference method. This method does not need extra
post-processing as the Zero and Delta method demands.
Moreover, it has the facility to determine the higher-order
partial derivatives of a nonlinear system. The partial
differentiation of a system can be computed from the end
of a training session of the neural network, and provide

Figure 1 Schematic of neural network
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aerodynamic derivatives directly as follows (Dongare and
Mohamed, 2015).
The input and output of function are mapped after the

training session of the neural network. Subsequently, the
output variables can be differentiated with respect to input
variables. Differentiating equations (1) and (3), we will have
the form of:

@D
@C

¼ WT (9)

@C
@B

¼ f 0 VTð Þ (10)

@B
@A

¼ g0 UTð Þ (11)

Multiplication of equations (9), (10) and (11) gives:

@D
@C

� @C
@B

� @B
@A

¼ WT � f 0VT � g0UT

@D
@A

¼ WT � f 0VT � g0UT

8>>><
>>>:

(12)

where f
0 ¼ diag 0 f

0
1 � � � f

0
l

� �
and g

0 ¼ diag 0 g
0
1

� � � � g0
m�. If

the input and output of neural network are normalized,
then:

@D
@A

¼ @D
@Dnorm

� @Dnorm

@Anorm
� @Anorm

@A
(13)

The normalized output of neural network can be de-
normalized by equation (13).Where:

@D
@Dnorm

¼

@D1

@D1;norm
0 � � � 0

0
@D2

@D2;norm
� � � 0

..

. ..
. . .

. ..
.

0 0 � � � @Dk

@Dk;norm

2
6666666666664

3
7777777777775

(14)

@A
@Anorm

¼

1 0 � � � 0

0
@A1;norm

@A1
� � � 0

..

. ..
. . .

. ..
.

0 0 � � � @An;norm

@An

2
6666664

3
7777775

(15)

Equations (14) and (15) can be computed from
equation (7). The trained network of aircraft neural model
allows given as:

Figure 2 Time history response of flight data and neural model

Figure 3 Variation in parameters with respect to data points

Table I Estimated aerodynamic derivatives from flight data

Parameter Wind tunnel NPD OEM

CLa 5.5338 4.7813 (0.05)* 4.5346 (0.13)
CLde 0.4318 0.6272 (0.16) 0.5923 (0.12)
Cma

�1.1768 �0.9455 (0.09) �1.2586 (0.02)
Cmq �23.0223 �25.34 (0.025) �22.7156 (1.84)
Cmde

�1.4168 �1.2418 (0.04) �1.3553 (0.03)

Note: *The values in parenthesis denote relative standard deviation
values in percentage
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@D
@A

¼

@D1

@A0
� � � @D1

@An

..

. . .
. ..

.

@Dk

@A0
� � � @Dk

@An

2
66666664

3
77777775

(16)

The standard deviation of estimated parameters in
equation (16) is computed by:

STD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXP
p¼1

XM
m¼1

XL
l¼1

C
0
lpvlmwklD

0
kp

 !
B

0
mpumi � AVG

" #2

P

vuuuut
(17)

where:

AVG ¼

XP
p¼1

XM
m¼1

XL
l¼1

C
0
lpvlmwklD

0
kp

 !
B

0
mpumi

P
(18)

Figure 4 Variation in parameters w.r.t. number of iterations during the
training

Figure 5 Comparison of _q from flight data and reconstructed from neural model

Figure 6 Time history verification of identified neural model
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where, STD and AVG are standard deviation and average of
data points, respectively. The RSTDof estimates is given by:

RSTD ¼ STD
AVG

� 100% (19)

Parameter estimation for an aircraft

Parameter estimation was carried out with flight test data of
small transport aircraft. The following sub-sections illustrate
the identification of aerodynamic derivatives separately for the
longitudinal and lateral-directional motion of the aircraft
dynamics.

Identification of aircraft longitudinal derivatives
This section describes aircraft longitudinal parameter
estimation from flight data. For this, the flight data of
small transport aircraft are gathered by conducting a
flight test with multiple 3-2-1-1 elevator input(d e) signal
with time duration of 45 s. Aircraft has trimmed at an
angle of attack 3.588 degree at Mach 0.25. The
postulated model structure of aircraft longitudinal
dynamics is given by:

CL ¼ CL0 1CLaa1CLq
q C

�

2U0
1CLd ed e

Cm ¼ Cm0 1Cmaa1Cmq
q C

�

2U0
1Cmd ed e

(20)

where CL :ð Þ and Cm :ð Þ are non-dimensional parameters which
need to be computed from the measurements of az and _q,
respectively, and U0 is velocity at which aircraft is trimming.
The derivative of CLa represents the lift curve slope and Cma

shows the static stability of an aircraft. CLq and Cmq are
damping derivatives. CLd e and Cmd e are representing the
control effectiveness of an aircraft elevator deflection. The
measurements of acceleration for the z-axis az and pitch _q
are used to compute Cm and CL using the following
equations:

az ¼ � qs
m
CLcosa � Fe

m
sins t

_q ¼ qsc
Iy

Cm 1
pr
Iy

Iz � Ixð Þ1 r2 � p2
� 	 Ixy

Iy
1

Fe

Iy
ltx sins t 1 ltz coss tð Þ

(21)

where m is mass, q is dynamic pressure, s is platform area of
wing, c is mean chord length, a is angle of attack (AoA), s t is
engine inclination angle, Fe is total thrust force, p roll rate, r is
yaw rate, I :ð Þ is moment of inertia about an axis and l :ð Þ is the
location of engine from the C.G.Considering the input vector
of a, q, d e and output vector of Cm and CL to the neural
network, it is able to establish the longitudinal dynamics of an
aircraft neural model. The time histories of these signals are
given in Figure 2 and it shows that estimated neural model is
close agreement with flight data. The NPD method discussed
in the previous section is applied to the established neural
model for the online estimation of aircraft aerodynamic
derivatives. The estimated parameters are procured at the end

Figure 7 Lateral-directional response of flight data and neural model

Table II Estimated lateral-directional derivatives from flight data

Parameters Wind tunnel values NPD OEM

Cyb �1.432 �1.648 (0.53)* �1.423 (0.49)
Clb �0.109 �0.0895 (1.43) �0.113 (1.02)
Cnb 0.103 0.120 (0.56) 0.114 (0.38)
Cyp �0.102 �0.366 (0.28) �0.190 (19.56)
Clp �0.599 �0.462 (0.14) �0.597 (19.56)
Cnp �0.175 �0.047 (3.25) �0.124 (2.04)
Cyr 0.454 1.405 (0.63) 1.975 (2.36)
Clr 0.221 0.02 (1.29) 0.365 (1.57)
Cnr �0.141 �0.371 (0.22) �0.236 (1.13)
Cyda �0.002 �0.037 (0.34) �0.076 (8.76)
Clda �0.119 �0.111 (0.19) �0.124 (0.85)
Cnda �0.011 �0.002 (0.83) �0.005 (8.95)
Cydr 0.328 0.365 (0.25) 0.248 (2.53)
Cldr 0.051 0.029 (9.26) 0.033 (2.02)
Cnd r �0.110 �0.079 (0.21) �0.077 (0.45)

Note: *The values in parenthesis denote relative standard deviation
values in percentage
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of training of the neural network. Standard deviation and
RSTD of these parameters are calculated independently from
equations (17) to (19) after the training process. Estimated
aerodynamic derivatives from flight data are tabulated in
Table I. Figure 3 shows the estimated values of the
aerodynamic derivatives with respect to the data points.
Whereas, the variation of parameters with change in a number
of iteration is plotted in Figure 4. As the number of iteration
increases, the parameters attain a stable value of their
estimates.
Figure 5 compares flight measured _q and az with those

derived from the neural model and shows a satisfactory match
between them. The estimated aircraft neural model is needed
to be verified with complimentary flight data. For this, the
neural network is trained with certain data set and new data set
is passed through the trained network. The output of networks
is used to compute az for a given input of a complementary
flight data and compared with az derived from lift force
coefficient obtain from the wind tunnel value. The comparison
plot of az signals is given in Figure 6. The time history of
estimated response az showsmismatch with az derived from the
wind tunnel, whereas it matches well with flight data. This
reconfirms that estimates of aerodynamic derivatives are not

very closer to wind tunnel values as shown in Table I and the
estimated neural model is valid.

Identification of aircraft lateral-directional derivatives
The flight test data of small transport aircraft are used to
estimate aerodynamic derivatives appearing in the expression of
side force, yawing and rolling moment coefficients. During the
flight test, the aircraft has trimmed at flight condition of 6.28-
degree angle of attack, Mach 0.22 at an altitude of 2,652 m.
The postulated model for the lateral-directional aircraft
dynamics is given by:

Cy ¼ Cy0 1Cyb b 1Cyp
pb
2U0

1Cyr
rb
2U0

1Cyd ad a1Cyd rd r

Cl ¼ Cl0 1Clb b 1Clp
pb
2U0

1Clr
rb
2U0

1Cld ad a1Cld rd r

Cn ¼ Cn0 1Cnb b 1Cnp
pb
2U0

1Cnr
rb
2U0

1Cnd ad a1Cnd rd r

(22)

where Cy :ð Þ; Cl :ð Þ and Cn :ð Þ are non-dimensional parameters
which need to be extracted, and U0 is velocity at which aircraft
is trimming.

Figure 8 Variation in parameters w.r.t data points
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The static directional (Weathercock) stability of aircraft can be
ensured by the positive value of Cnb . Clb is one of the most
important parameters for lateral-directional stability and
handling qualities. A negative value of Clb ensures the roll
stability of aircraft. The positive roll rate makes restoring
moment and hence the damping in roll derivative Clp has a
negative value. The side force coefficient Cyp is contributed by
the vertical tailplane and considered to be negative for a negative
horizontal force toward positive roll rate. The yawing moment
induced by roll rate has contributions from both the vertical tail
and the wing, and it is represented by Cnp derivative. As Cnp is
cross derivative, it has an influence on the Dutch roll mode
frequency.Cnr is the most important yaw rate stability derivative
and it is contributed by the vertical tailplane. As yawing motion
causes a horizontal force on the vertical tailplane that damps the
yawing motion, Cnr has a negative value. The positive aileron
deflection d a causes a negative rolling, and hence Cld a becomes
negative. The rudder effectiveness of an aircraft is indicated by
desirable derivativeCnd r.
Accelerometer measurements ay, p and r , are used for the

purpose of computational of force and moment coefficients in
the lateral-directional derivative estimation and they are given
as:

ay ¼ 1
g

qs
m
Cy 1 pq1 _rð ÞXay � r2 � p2

� 	
Yay 1 rq� _pð ÞZay


 �

_p ¼ qsb
IxIz � I2xz

IzCl 1 IxzCn½ � � qr
I2xz � IyIz 1 I2z

IxIz � I2xz
1 pq

Ixz Ix � Iy 1 Izð Þ
IxIz � I2xz

_r ¼ qsb
IxIz � I2xz

IxCn 1 IxzCl½ �1 pq
I2xz � IyIz 1 I2z

IxIz � I2xz
� qr

Ixz Ix � Iy 1 Izð Þ
IxIz � I2xz

(23)

where m is mass, q is dynamic pressure, s is platform area of
wing, b is the wing span, p roll rate, q is pitch rate, r is yaw rate,
I :ð Þ is moment of inertia about an axis and l :ð Þ is the location of
engine from theC.G.
The lateral-directional response of flight data and

estimated responses are given in Figure 7, and it is found
that they are in close agreement with other. This ensures
that the dynamics of aircraft model have been accurately
identified. Estimated lateral-directional derivatives from
flight data are tabulated in Table II. The variation of
parameters associated with side force, lateral stability,
directional stability and control with respect to data points
is shown in Figure 8. The variation of these parameters
with number of iterations is also given in Figure 9. The
close agreement of flight data with reconstructed lateral-
directional responses from the neural model is shown in
Figure 10 and therefore, estimated neural model of aircraft
system is accurate. To verify the estimated aircraft neural
model, complimentary flight data set is passed through the
trained network and computed ay using the outputs of
the network for the given input complementary flight data.
The ay can also be computed by using the side force
coefficient obtained from the wind tunnel and estimates of
OEM. These computed ay is compared with measured ay
for the same input, and comparison plot for the
accelerations ay is given in Figure 11. A good match

Figure 9 Variation in parameters w.r.t number of iterations during
training
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between these flight measured and predicted response is
witnessed.

Parameter estimation for a flexible aircraft

In the absence of flight data, simulated data of flexible aircraft
are generated by using the postulated model of a large
transport aircraft. The following subsection describes the

details of structural modes excited with a rigid body mode of
the aircraft.

Flight simulation of a flexible aircraft
The simulated data of flexible aircraft containing the two elastic
modes get excited in the longitudinal axis. The included two
structural modes in flight simulation characterize fuselage

Figure 10 Comparison of ay; _p; _r measured and reconstructed from neural networks
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Figure 11 Time history verification of identified neural model

Figure 12 Mode shapes of flexible aircraft

Figure 13 Comparison of aircraft responses
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bending with wing participating in phase and wing bending and
fuselage participating out of phase. The mode shapes of these
two modes of aircraft are given in Figures 12(a) and (b).
Postulated model of a flexible aircraft for pitching motion can
be approximated by neglecting variations in velocity, which are
given as (Ghosh and Raisinghani, 1994):

_a ¼ q1
ruS
2m

CZ

_q ¼ ru2Sc
2Iy

Cm

(24)

where CZ and Cm represent the aerodynamic coefficients that
consist of the aircraft stability and control derivatives (Waszak
and Schmidt, 1988). Air density r , total inertial velocity u,
wing area S, wing chord c, aircraft mass m and the moment
inertia Iy about y-axis are the other quantities used in the above
equations. The aerodynamic coefficients CZ and Cm used in
aerodynamicmodels of flexible aircraft can be written as:

CZ ¼ CZ0 1CZa
a1CZq

qc
2u

1CZd e
d e 1CZh1h1 1CZh2h2

1
c
2u

CZh 1 _h1 1
c
2u

CZh 2 _h2Cm ¼ Cm0 1Cma
a

1Cmq

qc
2u

1Cmd e
d e 1Cmh1h1 1Cmh2h2

1
c
2u

Cmh 1 _h1 1
c
2u

Cmh 2 _h2 (25)

Next, we have to consider the elastic states of the flexible
aircraft to augment with rigid body dynamic model represented
in terms of elastic states (h1, h2) and ( _h1; _h2).

For this, the generalized coordinates satisfying equation (25)
was introduced byWaszak and Schmidt (1988):

€h1 12j 1v1 _h1 1v1
2h1 ¼ ru2Sc

2M1
Ch1

a a1Ch1
q

qc
2u

1Ch1
d e
d e




1 Ch1
h1h1 1Ch1

h2h2 1Ch1
h 1

_h1c
2u

1Ch1
h 2

_h2c
2u

� ��
€h2

12j 2v2 _h2 1v2
2h2 ¼ ru2Sc

2M2
Ch2

a a1Ch2
q

qc
2u

1Ch2
d e
d e




1 Ch2
h1h1 1Ch2

h2h2 1Ch2
h 1

_h2c
2u

1Ch2
h 2

_h2c
2u

� ��
(26)

The simulated data for a, q, Nz (normal acceleration) and the
elastic states are generated. The aeroelastic effects would affect

Figure 14 Frequency response for pitch rate to elevator input ( qd e
)

Table III Estimated aerodynamic derivatives of flexible aircraft

Parameter True value NPD OEM

Czde �0.435 �0.429 (6.34)* �0439 (2.23)
Cza �2.922 �2.744 (0.09) �2.963 (0.29)
Czq 14.765 15.545 (1.69) 14.56 (4.19)
Cz _g1

�0.0848 �0.052 (1.67) –

Cz _g2
1.03 1.087 (1.95) –

Czg1 �0.0288 �0.029 (0.17) �0.0291 (0.54)
Czg2 0.306 0.31 (0.51) –

Cmde �2.578 �2.293 (0.28) �2.546 (0.31)
Cma �1.66 �1.566(0.17) �1.639 (0.56)
Cmq �34.75 �32.476 (1.47) �34.57 (0.30)
Cm _g1

�0.159 �0.112 (0.92) 0.157(1.37)
Cm _g2

1.23 0.628 (3.22) –

Cmg1 �0.0321 �0.034 (0.13) �0.031 (0.96)
Cmg2 �0.025 0.027 (2.11) –

Cdeg1 �0.0128 �0.013 (1.04) �0.0127 (0.07)
Cg1a �0.0149 �0.016 (0.24) �0.015 (0.12)
Cg1q �0.095 �0.084 (5.78) –

x1 6.29 6.254 (2.47) –

x2 7.21 7.18 (3.47) –

Cg1_g2
�2e�04 �2.2e�4 (6.14) –

Cg1g1 6e�05 6e�05 (0.13) 5.7e�05 (0.6)
Cg1g2 �9e�05 �7e�05 (1.86) –

Cg2de �0.064 �0.065 (1.66) �0.0634 (0.19)
Cg2a 0.026 0.026 (0.75) –

Cg2q 0.012 0.012 (4.57) –

Cg2_g1
0.009 0.009 (1.46) –

Cg2_g2
�0.298 �0.290 (0.54) –

Cg2g1 0.004 0.004 (0.09) –

Note: *The values in parenthesis denote relative standard deviation
values in percentage
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the aircraft response for given control input. Simulated data are
plotted for rigid body and flexible aircraft, as shown in
Figure 13. As seen, a and q responses for flexible data not only
differ quantitatively but also qualitatively from the rigid body
response. The frequency response of the rigid model and the
aeroelastic models are given in Figure 14. Review of this result
reveals that the two elastic modes are excited at frequencies of
6.29 rad/s and 7.21 rad/s with damping factor j 1 = j 1 = 0.02.
Thus, the application of a rigid body model in the estimation
algorithmwould lead to erroneous and unacceptable results for
a flexible aircraft.

Parameter estimation results and discussion for flexible
aircraft
The neural model of a flexible aircraft has been established
by training the neural network with input vector
[d e; a; q; :h1 ; h2

:; h1; h2] and output vector
[Cz; Cm; h1

::; h2
::]. TheNPDmethod is applied to simulated

data of flexible aircraft with a prior information of model

structure presented in equation (25). The frequency of the
structural modes, rigid body and elastic body derivatives of
flexible aircraft are estimated and tabulated in Table III with
their standard deviations and RSTDs of estimates in
parenthesis. Figure 15 shows time histories of the output
signals (Cz; Cm; h1

::; h2
::) to the neural network and

Figure 16 shows input signals (d e; a; q; h1
:; h1

:; h2; h2).
The flight simulation is carried out by input frequency sweep
signals of elevator for time duration of 90 s.
In the case of flight data, elastic information of flexible

aircraft is not available in the flight test instrumentation. But,
the elastic information of €h1 and €h2 are indirectly measurable
using differential accelerometers and their measurement
models are given by:

Damk ¼ f k €hk; k ¼ 1; 2 (27)

where Damk is measured through the installation of
accelerometers at different positions along the aircraft
structure, and f k defines the structural modes contributed

Figure 15 Time history response of flexible aircraft and neural model (output signal)

Figure 16 Time history response of input signal to neural network
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to each of measurements. Subsequently, elastic
information of h1; h2; _h1; _h2; is computed from these
measurements. Figure 17 shows the estimation of
parameter Cma; Ch1

h1
; Ch1

d e ; v1 using the NPD method for
simulated data with respect to data points. It shows there is

a marginal variation in Ch1
d e with respect to the different

data points. The variation of parameter Cma; Ch1
h1
;Ch1

d e ; v1

with respect to the number of iteration is shown in
Figure 18. As the number of iteration increases, the
parameters attain stable value of its estimates. The time
history response of simulated data and estimated
responses are given in Figure 15, and it is found that they
are in good agreement. This ensures that the dynamics of
flexible aircraft model have been accurately identified.
Figure 19 shows comparison between Nz from simulated
data and reconstructed from neural networks. Predictable
neural model of flexible aircraft is required to be verified
with a complementary set of simulated data. For this, the
neural network is trained with data set given by an elevator
input signal of the frequency sweep, then a new data set is
generated with an elevator input signal of 3-2-1-1 and
passed through the trained network. The output is used to
compute Nz for the given input of complementary data.
Comparison plot for the normal accelerations Nz is given
in Figure 20 and the responses are matched for simulated
and predicted neural network signal.

Conclusions

The NPD method is applied to flight data for the purpose of
online estimation of aircraft parameters. For this, initially a
neural model representing the MIMO aircraft system is
established. Moreover, a separate consideration for the rigid
and flexible aircraft dynamic is made to simplify the model
considerably in terms of structure and the number of
parameters. Aircraft longitudinal and lateral-directional
derivatives are estimated from flight data using the NPD
method, and it is found that the estimates are close to wind
tunnel values and comparable with estimates obtained from
the OEM. The complimentary flight data are used to
validate the identified neural model of aircraft. This shows
that the NPD method has become preferred approach to
estimate parameters as it does not require the initial value of
estimates. As the initial values of parameters are not
available in a practical situation as well as OEM requires
these initial parameters, application of the NPD approach

Figure 17 Variation in parameters w.r.t. data points of flexible aircraft

Figure 18 Variation in parameters w.r.t. number of iterations during
training of flexible aircraft

Figure 19 Comparison of Nz of flexible aircraft
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gives an advantage over OEM to estimate aerodynamic
parameters from flight data.
Furthermore, we extended the use of the NPD method to a

flexible aircraft and estimated rigid body and elastic body
derivatives from simulated data. The flight simulation of
flexible aircraft is carried out for an elevator input of frequency
sweep. Moreover, symmetric and antisymmetric structural
modes are included in the flight simulation to represent the
flexibility of aircraft. As a result, a mathematical model of
flexible aircraft contains toomany parameters. Proposed neural
network approach of NPD works well for the parameter
estimation with their noise statistics, as this approach does not
have convergence issue in estimates from established neural
model.
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